Approximating tangents

Motivation

Find the slope of

f(x)= x22

at P= [ 1,12 ] . Find the equation of the line touching f(x) at P.

Secant

The secant to f(x) at the points [ ω,f(ω) ] and [ u,f(u) ] is the line passing through these points. Its slope is

𝓂= f(ω) - f(u) ω-u
lim x1 f(1) - f(x) 1-x = lim x1 122 - x22 1-x = lim x1 ( 1-x) ( 1+x) 2(1-x)
interactive solution

Limit

Let f:𝒟 be a function such that f(x) is defined on a neighborhood of ω (except possibly at ω itself). Then is a limit for f at ω

limxω f(x)=

if

ε + , δ(ε) + :0< d(x,ω) <δ(ε) d(f(x),) < ε

Real valued functions

Let f: be defined on (ω-,ω) (ω,ω+) . Then is a limit for f at ω

limxω f(x)=

if

ε + , δ(ε) + : 0<|x-ω| <δ(ε) |f(x) - |<ε

Right Limit

Let f: be defined on (ω,ω+). Then + is a right limit (limit from the right) for f at ω

limxω+ f(x)= +

if

ε + , δ(ε) + : 0<x-ω <δ(ε) |f(x) -+ |<ε

Left Limit

Let f: be defined on (ω-,ω). Then - is a left limit (limit from the left) for f at ω

limxω- f(x)=-

if

ε + , δ(ε) + : 0<ω-x <δ(ε) |f(x) -- |<ε
limxω f(x)= limxω- f(x)=- limxω+ f(x)=+ - =+
argument

Positive Infinity Limit

Let f: be defined on (ω-,ω) (ω,ω+). Then is a limit for f at ω

limxω f(x)=

if

+ , δ() + : 0<|x-ω| <δ() < f(x)

Right Positive Infinity Limit

Let f: be defined on (ω,ω+). Then is a right limit for f at ω

limxω+ f(x)=

if

+ , δ() + : 0<x-ω <δ() < f(x)

Left Positive Infinity Limit

Let f: be defined on (ω-,ω). Then is a left limit for f at ω.

limxω- f(x)=

if

+ , δ() + : 0<ω-x <δ() < f(x)

Negative Infinity Limit

Let f: be defined on (ω-,ω) (ω,ω+). Then - is a limit for f at ω

limxω f(x)=-

if

+ , δ() + : 0<|x-ω| <δ() f(x) <-

Right Negative Infinity Limit

Let f: be defined on (ω,ω+). Then - is a right limit for f at ω

limxω+ f(x)=-

if

+ , δ() + : 0<x-ω <δ() f(x) <-

Left Negative Infinity Limit

Let f: be defined on (ω-,ω). Then - is a left limit for f at ω

limxω- f(x)=-

if

+ , δ() + : 0<ω-x <δ() f(x) <-

Vertical asymptotes

Let f: then x=ω is a vertical asymptote for f(x) if one of the following holds:

limxω f(x)= limxω f(x)=- limxω+ f(x)= limxω+ f(x)=- limxω- f(x)= limxω- f(x)=-

Limit at Positive Infinity

Let f: be defined on (,). Then is a limit for f at

limx f(x)=

if

ε + , (ε) + : (ε)<x | f(x) - | < ε

Infinite limits at positive infinity

limx f(x)=

if

+ , () + : ()<x < f(x)
limx f(x)=-

if

+ , () + : ()<x f(x) < -

Limit at Negative Infinity

Let f: be defined on (-,). Then is a limit for f at

limx- f(x)=

if

ε + , (ε) + : x <- (ε) | f(x) - | < ε

Infinite limits at negative infinity

limx- f(x)=

if

+ , () + : x <- () < f(x)
limx- f(x)=-

if

+ , () + : x <- () f(x) < -

Horizontal asymptotes

Let f: and then y= is a horizontal asymptote for f(x) if one of the following holds:

limx f(x)= limx- f(x)=

Examples

Limit examples

  • try limx3 ( 2+3x )
  • try lim x3 ( 1+ 3-x 2 )
  • try lim x2 ( 3- x2 + |x-2| 2 (x-2) )
  • try lim x-2 1 ( x+2 ) 2
  • try lim x0 sin ( πx )

One sided limits

  • try lim x1+ f(x) where f(x) = { 1 1-x x<1 1+x x 1<x
  • try lim x2- f(x) where f(x) = { 2+ 1x-3 x<2 4- x2 2x
  • try limx 0- f(x) and limx 0+ f(x) where

    f(x) = { sin 4π x x<0 x3 0<x

+∞ limits

  • try limx-2 1 (x-2) 2
  • try limx 0+ f(x) where f(x) = { 2+ 1 x2+1 x0 1x 0<x
  • try limx 0- f(x) where f(x) = -1x

-∞ limits

  • try limx2 -1 |x+2|
  • try limx2+ -1 |x+2|
  • try limx 2- f(x) where f(x) = { 1 x-2 x<2 x3 2<x

Limits at +∞

  • try limx ( 2sinx+6 )

    and limx f(x) where f(x) = { sinx x2 5cosx x+2 2<x

  • try limx f(x) = x10 (7+sinx)

Infinite Limits at +∞

  • try limx x10 (7+sinx)
  • try limx x2 (1+sinx)
  • try limx -4x

Limits at -∞

  • try limx-∞ f(x) where f(x) = { 1x+3 x<-1 2 1+x2 +1 -1<x
  • try limx-∞ sinx

Infinite Limits at -∞

  • try limx-∞ 8log(-x)
  • try limx-∞ -8log(-x)