Limit Laws

Basic limits
limxω 𝒸=𝒸 limxω x=ω
Sum
limxω ( f(x) + g(x) ) = limxω f(x) + limxω g(x)
Difference
limxω ( f(x) - g(x) ) = limxω f(x) - limxω g(x)
Constant multiple
limxω 𝒸 f(x) = 𝒸 limxω f(x)
Product
limxω ( f(x) g(x) ) = ( limxω f(x) ) ( limxω g(x) )
Division
Assuming limxω g(x) 0
limxω f(x) g(x) = limxω f(x) limxω g(x)
Power
Assuming n+
limxω ( f(x) ) n = ( limxω f(x) ) n

Root

Assuming n+ is even.

limxω f(x) n = limxω f(x) n

Assuming n+ is odd and limxω f(x) >0 .

limxω f(x) n = limxω f(x) n

Polynomials and rational functions

Let p(x), q(x) be two polynomials

limxω p(x) = p(ω),

If q(ω) 0 then

limxω p(x) q(x) = p(ω) q(ω)

Limit rules also apply to:

  • two sided limits,
  • one sided limits,
  • limits at positive infinity,
  • limits at negative infinity.

Examples

  • limx5 2
  • limx-2 x
  • limx𝒷 ( x-2 )
  • limx1 ( 4x3 +3x -1 ) x+8
  • limx𝒷 5x4 +x3 +x2 -7 x3+3
  • limx3- (x-3)2 x2-9
  • limx3- x2-9 (x-3)2
  • limx3+ x2-9 (x-3)2
  • try limx0 ( x2 sin ( 1x ) )
  • try limx0 ( |x| ( 1+ cos ( 1x ) 2 ) - x2 ( 1- cos ( 1x ) 2 ) )
  • try limx0+ sinx
  • try limx0- sinx
  • limx0 ( 1- cosx )
  • limx0 sinx x , see its graph
  • limx0 ( 1- cosx ) x

Squeeze Theorem

Let f(x), g(x), h(x) be three functions defined on an open interval of ω. Suppose for all points on the interval except possibly at ω the following hold:

  • f(x) g(x) h(x)
  • limxω f(x) = limxω h(x) =

Then

limxω g(x) =