Antiderivatives

Primitive function

A function F(x) is antiderivative or primitive functions of a function f(x) on an interval if F(x) is differentiable on and

F (x) = f(x)

for all values in .

If F1 (x) and F2 (x) are both primitive functions of f(x) on an interval then

F1 (x) - F2 (x) =𝒸

for some fixed constant 𝒸.

Indefinite integral

The collection of all primitive functions of f(x) on an interval is called the indefinite integral and denoted

f(x) dx
( αf(x) + βg(x) ) dx = α f(x) + β g(x)

Table of primitives

1 xn dx = xn+1 n+1 +𝒸 2 1x dx = ln|x| +𝒸 3 x dx = x +𝒸 4 sinx dx = -cosx +𝒸 5 cosx dx = sinx +𝒸
1 1 1-x2 dx = arcsinx +𝒸 2 1 1+x2 dx = arctanx +𝒸
1 tanx dx = ln | 1 cosx | +𝒸 = ln | secx | +𝒸 2 cotx dx = ln | sinx | +𝒸 3 secx dx = ln | secx + tanx | +𝒸 4 cscx dx = - ln | cscx + cotx | +𝒸
x (x-2) dx (x-1) x dx