Integration by Substitution

Indefinite integral

Let u= g(x) and F(x) =f(x)

f( g(x) ) g(x) dx = f( u ) du = F(u)+𝒸 = F( g(x) ) +𝒸

Riemann integral

Let u= g(x) and F(x) =f(x)

𝒶 𝒷 f( g(x) ) g(x) dx = g(𝒶) g(𝒷) f( u ) du

Symmetries

Examples

6x ( 3x2 +4 ) 4 dx x x+1 dx 3 x-10 dx 1 9-4x2 dx
-1 2 x2 ( 2x3 +1 ) 5 dx 1 lnx x dx 1 2 1x x2 dx 0 π2 sinx 1+cosx dx
-2 2 x4 +3x2 -7 dx 0 2 x4 +3x2 -7 dx -2 2 x5 -8sinx dx

Further examples

Indefinite substitution

z z2 -5 dz sint cos3t dt -x dx

Indefinite substitution

3x2 2x3 dx 2x3 +3x x4 +3x2 dx 1 1+4x2 dx

Definite substitution

0 π2 cos2x dx 0 1 x 4x2 +3 dx 1 2 -x+1 dx

Definite substitution

0 1 1 1-x2 dx 0 3 1 1+x2 dx