Partial Fractions

Reduce degree

= P(x) Q(x) x
P(x) = S(x) Q(x) + R(x) with degR(x) < degQ(x)

Thus

P(x) Q(x) = S(x) Q(x) + R(x) Q(x) = S(x) + R(x) Q(x)

Factor

= R(x) Q(x) x
Q(x) = (x-r1) m1 (x-rt) mt . ( x2 +u1x +v1 ) n1 ( x2 +ukx +vk ) nk

Separate

R(x) Q(x) = A1,1 (x-r1) + A1,2 (x-r1) 2 ++ A1, m1 (x-r1) m1 x-r1 + + At,1 (x-rt) + At,2 (x-rt) 2 ++ At, mt (x-rt) mt x-rt + B1,1 x+ C1,1 x2 +u1x +v1 + B1,2 x+ C1,2 ( x2 +u1x +v1 ) 2 ++ B1, n1 x+ C1, n1 ( x2 +u1x +v1 ) n1 x2 +u1x +v1 + + Bk,1 x+ Ck,1 x2 +ukx +vk + Bk ,2 x+ Ck ,2 ( x2 +ukx +vk ) 2 ++ Bk ,nk x+ Ck ,nk ( x2 +ukx +vk ) nk x2 +ukx +vk