Partial Fractions
Reduce degree
ℐ
=
∫
P
(
x
)
Q
(
x
)
ⅾ
x
P
(
x
)
=
S
(
x
)
Q
(
x
)
+
R
(
x
)
with
deg
R
(
x
)
<
deg
Q
(
x
)
Thus
P
(
x
)
Q
(
x
)
=
S
(
x
)
Q
(
x
)
+
R
(
x
)
Q
(
x
)
=
S
(
x
)
+
R
(
x
)
Q
(
x
)
Factor
ℐ
=
∫
R
(
x
)
Q
(
x
)
ⅾ
x
Q
(
x
)
=
(
x
-
r
1
)
m
1
…
⁢
(
x
-
r
t
)
m
t
.
(
x
2
+
u
1
⁢
x
+
v
1
)
n
1
…
⁢
(
x
2
+
u
k
⁢
x
+
v
k
)
n
k
Separate
R
(
x
)
Q
(
x
)
=
A
1
,
1
(
x
-
r
1
)
+
A
1
,
2
(
x
-
r
1
)
2
+
⋯
+
A
1
,
m
1
(
x
-
r
1
)
m
1
⏞
x
-
r
1
+
⋯
⋯
+
A
t
,
1
(
x
-
r
t
)
+
A
t
,
2
(
x
-
r
t
)
2
+
⋯
+
A
t
,
m
t
(
x
-
r
t
)
m
t
⏞
x
-
r
t
+
B
1
,
1
⁢
x
+
C
1
,
1
x
2
+
u
1
⁢
x
+
v
1
+
B
1
,
2
⁢
x
+
C
1
,
2
(
x
2
+
u
1
⁢
x
+
v
1
)
2
+
⋯
+
B
1
,
n
1
⁢
x
+
C
1
,
n
1
(
x
2
+
u
1
⁢
x
+
v
1
)
n
1
⏞
x
2
+
u
1
⁢
x
+
v
1
+
⋯
⋯
+
B
k
,
1
⁢
x
+
C
k
,
1
x
2
+
u
k
⁢
x
+
v
k
+
B
k
,
2
⁢
x
+
C
k
,
2
(
x
2
+
u
k
⁢
x
+
v
k
)
2
+
⋯
+
B
k
,
n
k
⁢
x
+
C
k
,
n
k
(
x
2
+
u
k
⁢
x
+
v
k
)
n
k
⏞
x
2
+
u
k
⁢
x
+
v
k