Improper Integrals

Type I

unbounded intervals

At positive infinity

Let f(x) be continuous on [𝒶,) then

𝒶 f(x) x = lim𝒷 𝒶 𝒷 f(x) x

If the limit is finite then the improper integral converges and is the value of the integral, otherwise the improper integral diverges.

At negative infinity

Let f(x) be continuous on (-∞,𝒷] then

-∞ 𝒷 f(x) x = lim𝒶-∞ 𝒶 𝒷 f(x) x

If the limit is finite then the improper integral converges and is the value of the integral, otherwise the improper integral diverges.

From negative to positive infinity

Let f(x) be continuous on (-∞,) then

-∞ f(x) x = -∞ 𝒸 f(x) x + 𝒸 f(x) x

where 𝒸 is any real value.

Comparison Theorem

Let f(x) and g(x) be continuous on [𝒶,) such that

x [𝒶,) , 0 f(x) g(x)

then

  1. If 𝒶 f(x) x diverges then 𝒶 g(x) x diverges.
  2. If 𝒶 g(x) x converges then 𝒶 f(x) x converges.

Comparison Theorem

geometry

g(x) f(x)

Type I

Examples

Exm

Type II

discontinuous functions

Left end

Let f(x) be continuous on (𝒶,𝒷] then

𝒶 𝒷 f(x) x = lim u 𝒶+ u 𝒷 f(x) x

If the limit is finite then the improper integral converges and is the value of the integral, otherwise the improper integral diverges.

Right end

Let f(x) be continuous on [𝒶,𝒷) then

𝒶 𝒷 f(x) x = lim u𝒷- 𝒶 u f(x) x

If the limit is finite then the improper integral converges and is the value of the integral, otherwise the improper integral diverges.

Mid interval

Let f(x) be continuous on [𝒶,𝒷] except at 𝒸(𝒶,𝒷) then

𝒶 𝒷 f(x) x = 𝒶 𝒸 f(x) x + 𝒸 𝒷 f(x) x

Type I

Examples

Exm