Vector spaces

Crazy Vector Space

𝑪𝑽𝑺 = { [ x y ] x,y } /

Operations

[ x1 y1 ] [ x2 y2 ] = [ x1 + x2 -2 y1 + y2 ] α [ x y ] = [ αx -2α +2 α y ]

Rank Nullity

R5 to R3

𝝋 ( ( x1 x2 x3 x4 x5 ) ) = ( 2x1+x2-3x4 3x1+x2-x3-4x4-x5 -x1-x2-x3+2x4-x5 )

R5 to R3

(101-10-2-21-1)(210-3031-1-4-1-1-1-12-1) = (10-1-1-1012-1200000)

Matrix Representation

P2 to CVS

𝝋 ( p0 +p1x +p2 x2 ) = [ p1+2 2p2 ]

With basis

b1 =1 b2 =x b3 =x2

and

g1 = [ 3 0 ] g2 = [ 2 1 ]

P2 to CVS

𝝋 ( p0 +p1x +p2 x2 ) = [ p1+2 2p2 ]

With basis

b1 = x2 -8x +5 b2 = x2 -5x +3 b3 = -x2 +7x -4

and

g1 = [ 3 0 ] g2 = [ 2 1 ]

Change of Basis

P2

𝒊𝒅 ( p0 +p1x +p2 x2 ) = p0 +p1x +p2 x2

With basis

b1 =1 b2 =x b3 =x2

and

d1 = x2 -8x +5 d2 = x2 -5x +3 d3 = -x2 +7x -4

P2

( 5 3 -4 1 0 0 -8 -5 7 0 1 0 1 1 -1 0 0 1 ) ( 1 0 0 2 1 -1 0 1 0 1 1 3 0 0 1 3 2 1 )

CVS

𝝋 ( [ x y ] ) = [ x y ]

With basis

g1 = [ 3 0 ] g2 = [ 2 1 ]

and

g1 = [ 7 9 ] g2 = [ 6 7 ]

CVS

( 5 4 1 0 9 7 0 1 ) ( 1 0 -7 4 0 1 9 -5 )