Determinants

Determinant function

A n×n determinant is a function

det: n×n 𝕂

such that

det(EA) = det(E) det(A)

for any elementary matrix E and any matrix A. Furthermore

  1. det(E)=1 if E represents a linear combination;
  2. det(E)=-1 if E represents a swap;
  3. det(E)=k if E represents a rescaling by k;
  4. det(I)=1

remark

Conditions (1) and (3) imply condition (2).

row or zeros

If matrix has a row of zeroes then its determinant is zero.

linearly dependent rows

The determinant of a matrix is zero if and only if its rows are linearly dependent.

uniqueness

The determinant function is unique.

multiplication

det(AB) = det(A) det(B)

transpose

det(A) = det( At )

Existence

Permutation

( 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 )

Sum of vectors

det ( ρ1 ρ i-1 𝒖 + 𝒗 ρ i+1 ρn ) = det ( ρ1 ρ i-1 𝒖 ρ i+1 ρn ) + det ( ρ1 ρ i-1 𝒗 ρ i+1 ρn )

Sum over permutations

det(A) = 𝝈 a 1 𝝈(1) a 2 𝝈(2) a n 𝝈(n) det( P𝝈 ) = i=1 n (-1) i+c a ic det (A (ic) ) = i=1 n (-1) r+i a ri det (A (ri) )

Determinant of Permutations

Inversions

Let 𝝈 =( 𝝈(1) , 𝝈(2) 𝝈(n) ) be a permutation. In the permutation matrix P𝝈 two rows k<l are inversion if and only if 𝝈(k) > 𝝈(l)

Swaps

A row swap in a permutation matrix changes the parity of the number of inversions in the matrix.

Preservations of parity

If a permutation has odd number of inversions then swapping to the identity matrix takes odd number of inversions. If a permutation has even number of inversions then swapping the rows to the indetity matrix takes odd number of inversions.

Sign of a permutation

The sign of a permutation 𝝈 =( 𝝈(1) , 𝝈(2) 𝝈(n) ) is

sign(𝝈) = (-1) #inversion𝝈

Determinant formulae

det(A) = 𝝈 a 1 𝝈(1) a 2 𝝈(2) a n 𝝈(n) det( P𝝈 ) = 𝝈 a 1 𝝈(1) a 2 𝝈(2) a n 𝝈(n) sign( P𝝈 )