Computing via linear dependence

in 4

4

φ ( ( x1 x2 x3 x4 ) ) = ( 16x1+5x2-26x3-12x4 -10x1-3x2+16x3+8x4 3x1-x2-7x3-4x4 7x1+3x2-10x3-5x4 )

4

φ ( ( x1 x2 x3 x4 ) ) = ( 16x1+5x2-26x3-12x4 -10x1-3x2+16x3+8x4 3x1-x2-7x3-4x4 7x1+3x2-10x3-5x4 )
φ ( ( 1 1 1 -1 ) ) = ( 7 -5 -1 5 ) φ ( ( 5 -3 1 2 ) ) = ( 15 -9 3 6 ) =3 ( 5 -3 1 2 )

4

φ ( ( x1 x2 x3 x4 ) ) = ( 16x1+5x2-26x3-12x4 -10x1-3x2+16x3+8x4 3x1-x2-7x3-4x4 7x1+3x2-10x3-5x4 )
( 1 0 0 1 ) 𝒖0 ( 4 -2 -1 2 ) 𝒖1 =φ( 𝒖0 ) ( 56 -34 13 22 ) 𝒖2 =φ( 𝒖1 ) ( 124 -74 23 50 ) 𝒖3 =φ( 𝒖2 ) ( 416 -250 85 166 ) 𝒖4 =φ( 𝒖3 )

4

( 0 0 0 0 ) = 0 ( 1 0 0 1 ) -3 ( 4 -2 -1 2 ) -2 ( 56 -34 13 22 ) + ( 124 -74 23 50 )

construct

p(x) = 0 -3x -2 x2 +x3 = (x-0) (x-3) (x+1)

4

𝒐 = (φ- 0𝒊𝒅) (φ-3 𝒊𝒅) (φ+1 𝒊𝒅) 𝒖 𝒛1 𝒛2

compute

( 1 0 0 1 ) 𝒛0 ( 5 -2 -1 3 ) = ( 4 -2 -1 2 ) + ( 1 0 0 1 ) 𝒛1 =φ ( 𝒛0 ) + 𝒊𝒅 ( 𝒛0 ) ( 45 -30 15 15 ) = ( 60 -36 12 24 ) -3 ( 5 -2 -1 3 ) 𝒛2 =φ ( 𝒛1 ) - 3𝒊𝒅 ( 𝒛1 )

4

𝒐 = (φ+1 𝒊𝒅) (φ-3 𝒊𝒅) (φ-0 𝒊𝒅) 𝒖 𝒛1 𝒛2

compute

( 1 0 0 1 ) 𝒛0 ( 4 -2 -1 2 ) = ( 4 -2 -1 2 ) -0 ( 1 0 0 1 ) 𝒛1 =φ ( 𝒛0 ) -0 𝒊𝒅 ( 𝒛0 ) ( 44 -28 16 16 ) = ( 56 -34 13 22 ) -3 ( 4 -2 -1 2 ) 𝒛2 =φ ( 𝒛1 ) - 3𝒊𝒅 ( 𝒛1 )

Computing via linear dependence

in 3

3

L = (7-6-43-2-23-3-1)
( 1 2 0 ) 𝒖0 ( -5 -1 -3 ) 𝒖1 =L 𝒖0 ( -17 -7 -9 ) 𝒖2 =L 𝒖1 ( -41 -19 -21 ) 𝒖3 =L 𝒖2

3

( 0 0 0 ) = 1 ( 1 2 0 ) +-32 ( -5 -1 -3 ) +12 ( -17 -7 -9 )

construct

p(x) = 2 -3x +x3 = (x-2) (x-1)

3

𝒐 = (φ-2 𝒊𝒅) (φ-1 𝒊𝒅) 𝒖 𝒛1 𝒛2

compute

( 1 2 0 ) 𝒛0 ( -6 -3 -3 ) = ( -5 -1 -3 ) -1 ( 1 2 0 ) 𝒛1 =φ ( 𝒛0 ) + 𝒊𝒅 ( 𝒛0 ) ( 0 0 0 ) = ( -12 -6 -6 ) -2 ( -6 -3 -3 ) 𝒛2 =φ ( 𝒛1 ) - 2𝒊𝒅 ( 𝒛1 )