Computing via linear dependence
in
ℝ
4
ℝ
4
φ
(
(
x
1
x
2
x
3
x
4
)
)
=
(
16
⁢
x
1
+
5
⁢
x
2
-
26
⁢
x
3
-
12
⁢
x
4
-
10
⁢
x
1
-
3
⁢
x
2
+
16
⁢
x
3
+
8
⁢
x
4
3
⁢
x
1
-
x
2
-
7
⁢
x
3
-
4
⁢
x
4
7
⁢
x
1
+
3
⁢
x
2
-
10
⁢
x
3
-
5
⁢
x
4
)
ℝ
4
φ
(
(
x
1
x
2
x
3
x
4
)
)
=
(
16
⁢
x
1
+
5
⁢
x
2
-
26
⁢
x
3
-
12
⁢
x
4
-
10
⁢
x
1
-
3
⁢
x
2
+
16
⁢
x
3
+
8
⁢
x
4
3
⁢
x
1
-
x
2
-
7
⁢
x
3
-
4
⁢
x
4
7
⁢
x
1
+
3
⁢
x
2
-
10
⁢
x
3
-
5
⁢
x
4
)
φ
(
(
1
1
1
-1
)
)
=
(
7
-5
-1
5
)
φ
(
(
5
-3
1
2
)
)
=
(
15
-9
3
6
)
=
3
⁢
(
5
-3
1
2
)
ℝ
4
φ
(
(
x
1
x
2
x
3
x
4
)
)
=
(
16
⁢
x
1
+
5
⁢
x
2
-
26
⁢
x
3
-
12
⁢
x
4
-
10
⁢
x
1
-
3
⁢
x
2
+
16
⁢
x
3
+
8
⁢
x
4
3
⁢
x
1
-
x
2
-
7
⁢
x
3
-
4
⁢
x
4
7
⁢
x
1
+
3
⁢
x
2
-
10
⁢
x
3
-
5
⁢
x
4
)
(
1
0
0
1
)
⏞
𝒖
→
0
(
4
-2
-1
2
)
⏞
𝒖
→
1
=
φ
(
𝒖
→
0
)
(
56
-34
13
22
)
⏞
𝒖
→
2
=
φ
(
𝒖
→
1
)
(
124
-74
23
50
)
⏞
𝒖
→
3
=
φ
(
𝒖
→
2
)
(
416
-250
85
166
)
⏞
𝒖
→
4
=
φ
(
𝒖
→
3
)
ℝ
4
(
0
0
0
0
)
=
0
⁢
(
1
0
0
1
)
-
3
⁢
(
4
-2
-1
2
)
-
2
⁢
(
56
-34
13
22
)
+
(
124
-74
23
50
)
construct
p
(
x
)
=
0
-
3
⁢
x
-
2
⁢
x
2
+
x
3
=
(
x
-
0
)
⁢
(
x
-
3
)
⁢
(
x
+
1
)
ℝ
4
𝒐
→
=
(
φ
-
0
⁢
𝒊𝒅
)
⁢
(
φ
-
3
⁢
𝒊𝒅
)
⁢
(
φ
+
1
⁢
𝒊𝒅
)
𝒖
→
⏟
𝒛
→
1
⏞
𝒛
→
2
compute
(
1
0
0
1
)
⏞
𝒛
→
0
(
5
-2
-1
3
)
=
(
4
-2
-1
2
)
+
(
1
0
0
1
)
⏞
𝒛
→
1
=
φ
(
𝒛
→
0
)
+
𝒊𝒅
(
𝒛
→
0
)
(
45
-30
15
15
)
=
(
60
-36
12
24
)
-
3
⁢
(
5
-2
-1
3
)
⏞
𝒛
→
2
=
φ
(
𝒛
→
1
)
-
3
⁢
𝒊𝒅
(
𝒛
→
1
)
ℝ
4
𝒐
→
=
(
φ
+
1
⁢
𝒊𝒅
)
⁢
(
φ
-
3
⁢
𝒊𝒅
)
⁢
(
φ
-
0
⁢
𝒊𝒅
)
𝒖
→
⏟
𝒛
→
1
⏞
𝒛
→
2
compute
(
1
0
0
1
)
⏞
𝒛
→
0
(
4
-2
-1
2
)
=
(
4
-2
-1
2
)
-
0
⁢
(
1
0
0
1
)
⏞
𝒛
→
1
=
φ
(
𝒛
→
0
)
-
0
⁢
𝒊𝒅
(
𝒛
→
0
)
(
44
-28
16
16
)
=
(
56
-34
13
22
)
-
3
⁢
(
4
-2
-1
2
)
⏞
𝒛
→
2
=
φ
(
𝒛
→
1
)
-
3
⁢
𝒊𝒅
(
𝒛
→
1
)
Computing via linear dependence
in
ℝ
3
ℝ
3
L
=
(
7
-6
-4
3
-2
-2
3
-3
-1
)
(
1
2
0
)
⏞
𝒖
→
0
(
-5
-1
-3
)
⏞
𝒖
→
1
=
L
⁢
𝒖
→
0
(
-17
-7
-9
)
⏞
𝒖
→
2
=
L
⁢
𝒖
→
1
(
-41
-19
-21
)
⏞
𝒖
→
3
=
L
⁢
𝒖
→
2
ℝ
3
(
0
0
0
)
=
1
⁢
(
1
2
0
)
+
-3
2
⁢
(
-5
-1
-3
)
+
1
2
⁢
(
-17
-7
-9
)
construct
p
(
x
)
=
2
-
3
⁢
x
+
x
3
=
(
x
-
2
)
⁢
(
x
-
1
)
ℝ
3
𝒐
→
=
(
φ
-
2
⁢
𝒊𝒅
)
⁢
(
φ
-
1
⁢
𝒊𝒅
)
𝒖
→
⏟
𝒛
→
1
⏞
𝒛
→
2
compute
(
1
2
0
)
⏞
𝒛
→
0
(
-6
-3
-3
)
=
(
-5
-1
-3
)
-
1
⁢
(
1
2
0
)
⏞
𝒛
→
1
=
φ
(
𝒛
→
0
)
+
𝒊𝒅
(
𝒛
→
0
)
(
0
0
0
)
=
(
-12
-6
-6
)
-
2
⁢
(
-6
-3
-3
)
⏞
𝒛
→
2
=
φ
(
𝒛
→
1
)
-
2
⁢
𝒊𝒅
(
𝒛
→
1
)